
MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

MODULE 2

Requirement Analysis and Design (8 hours)

Functional and non-functional requirements, Requirements engineering processes,

Requirements elicitation, Requirements validation, Requirements change, Traceability

matrix, Developing use cases, Software Requirements Specification Template, Personas,

Scenarios, User stories, Feature identification.

Design concepts - Design within the context of software engineering, Design Process,

Design concepts, Design Model.

Architectural Design - Software Architecture, Architectural Styles, Architectural

considerations, Architectural Design.

Component level design - What is a component?, Designing Class-Based Components,

Conducting Component level design, Component level design for web-apps.

Template of a Design Document as per “IEEE Std 1016-2009 IEEE Standard for

Information Technology Systems Design Software Design Descriptions”.

Case study: The Arianne 5 launcher failure.

Requirements Engineering

The process of establishing the services that the customer requires from a system and the

constraints under which it operates and is developed. The requirements themselves are the

descriptions of the system services and constraints that are generated during the requirements

engineering process. It may range from a high-level abstract statement of a service or of a system

constraint to a detailed mathematical functional specification.

Types of requirement

 User requirements-

Statements in natural language plus diagrams of the services the system provides and its

operational constraints. Written for customers.

 System requirements-

A structured document setting out detailed descriptions of the system’s functions,

services and operational constraints. Defines what should be implemented so may be

part of a contract between client and contractor.

Readers of different types of requirements specification

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Functional and non-functional requirements

 Functional requirements-

Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations.

May state what the system should not do.

 Non-functional requirements-

Constraints on the services or functions offered by the system such as timing constraints,

constraints on the development process, standards, etc.

Often apply to the system as a whole rather than individual features or services.

 Domain requirements

Constraints on the system from the domain of operation

Functional requirements

 Describe functionality or system services.

 Depend on the type of software, expected users and the type of system where the
software is used.

 Functional user requirements may be high-level statements of what the system should

do.

 Functional system requirements should describe the system services in detail.

Non-functional requirements

These define system properties and constraints e.g. reliability, response time and storage

requirements. Constraints are I/O device capability, system representations, etc. Process

requirements may also be specified mandating a particular IDE, programming language or

development method. Non-functional requirements may be more critical than functional

requirements. If these are not met, the system may be useless.

Types of nonfunctional requirement

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Non-functional requirements may affect the overall architecture of a system rather than the

individual components.

Non-functional classifications

 Product requirements

Requirements which specify that the delivered product must behave in a particular way

e.g. execution speed, reliability, etc.

 Organisational requirements

Requirements which are a consequence of organisational policies and procedures e.g.

process standards used, implementation requirements, etc.

 External requirements

Requirements engineering processes

The processes used for Requirement Engineering vary widely depending on the application

domain, the people involved and the organisation developing the requirements. Requirement

Engineering is an iterative activity in which these processes are interleaved.

Requirements which arise from factors which are external to the system development

process e.g. interoperability requirements, legislative requirements etc.

 Usability requirements

The system should be easy to use by medical staff and should be organized in such a way that

user errors are minimized. (Goal). Medical staff shall be able to use all the system functions

after four hours of training. After this training, the average number of errors made by

experienced users shall not exceed two per hour of system use. (Testable non-functional

requirement).

Metrics for specifying nonfunctional requirements

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

A spiral view of the requirements engineering process

1. Requirements elicitation and analysis

 Sometimes called requirements elicitation or requirements discovery.

 Involves technical staff working with customers to find out about the application

domain, the services that the system should provide and the system’s operational
constraints.

 May involve end-users, managers, engineers involved in maintenance, domain

experts, trade unions, etc. These are called stakeholders.

Problems of requirements analysis

 Stakeholders don’t know what they really want.

 Stakeholders express requirements in their own terms.

 Different stakeholders may have conflicting requirements.

 Organisational and political factors may influence the system requirements.

 The requirements change during the analysis process. New stakeholders may

emerge and the business environment may change.

Requirements elicitation and analysis

Software engineers work with a range of system stakeholders to find out about the application

domain, the services that the system should provide, the required system performance, hardware

constraints, other systems, etc.

Stages include:

 Requirements discovery and understanding: process of interacting with stake

holders to discover their requirements. Domain requirements from stakeholders and

documentation are also discovered.

 Requirements classification and organization: this activity takes the unstructured
collection of requirements, groups related requirements and organizes them into

coherent clusters.

 Requirements prioritization and negotiation: when multiple stakeholders are

involved, requirements will conflict. This activity is concerned with prioritizing
requirements and finding and resolving requirements conflicts through negotiation.

 Requirements specification (documentation): requirements are documented and

input into the next round of spiral.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

The requirements elicitation and analysis process

Requirements discovery (elicitation techniques)

The process of gathering information about the required and existing systems and distilling the

user and system requirements from this information. Interaction is with system stakeholders

from managers to external regulators. Systems normally have a range of stakeholders.

 Interviewing

Formal or informal interviews with stakeholders are part of most RE processes.

Types of interview

 Closed interviews : stakeholders answers based on pre-determined list of

questions

 Open interviews : in which there is no predefined agenda, where various issues

are explored with stakeholders

Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the requirements and are

willing to listen to stakeholders.

 Prompt the interviewee to get discussions going using a springboard question,

a requirements proposal, or by working together on a prototype system.

 Scenarios

Scenarios are real-life examples of how a system can be used.

They should include

 A description of the starting situation;

 A description of the normal flow of events;

 A description of what can go wrong;

 Information about other concurrent activities;

 A description of the state when the scenario finishes.

 Ethnography

 A social scientist spends a considerable time observing and analysing how people
actually work.People do not have to explain or articulate their work.

 Social and organisational factors of importance may be observed.

 Ethnographic studies have shown that work is usually richer and more complex than
suggested by simple system models.

 Requirements that are derived from cooperation and awareness of other people’s

activities.

 Awareness of what other people are doing leads to changes in the ways in which we

do things.

 Ethnography is effective for understanding existing processes but cannot identify

new features that should be added to a system.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Focused ethnography

 Developed in a project studying the air traffic control process.

 Combines ethnography with prototyping

 Prototype development results in unanswered questions which focus the

ethnographic analysis.

 The problem with ethnography is that it studies existing practices which may have

some historical basis which is no longer relevant.

Ethnography and prototyping for requirements analysis

2. Requirements specification
o The process of writing the user and system requirements in a requirements

document.

o User requirements have to be understandable by end-users and customers who do
not have a technical background.

o System requirements are more detailed requirements and may include more
technical information.

o The requirements may be part of a contract for the system development
o It is therefore important that these are as complete as possible.

Ways of writing a system requirements specification

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Requirements and design

In principle, requirements should state what the system should do and the design should describe

how it does this.

In practice, requirements and design are inseparable

o A system architecture may be designed to structure the requirements;

o The system may inter-operate with other systems that generate design requirements;
o The use of a specific architecture to satisfy non-functional requirements may be a

domain requirement.

o This may be the consequence of a regulatory requirement.
 Natural language specification

 Requirements are written as natural language sentences supplemented by diagrams

and tables.

 Used for writing requirements because it is expressive, intuitive and universal. This

means that the requirements can be understood by users and customers.

 Guidelines for writing requirements

 Invent a standard format and use it for all requirements.

 Use language in a consistent way. Use shall for mandatory requirements, should for

desirable requirements.

 Use text highlighting to identify key parts of the requirement.

 Avoid the use of computer jargon.

 Include an explanation (rationale) of why a requirement is necessary.

 Problems with natural language

 Lack of clarity

Precision is difficult without making the document difficult to read.

 Requirements confusion

Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation

Several different requirements may be expressed together.

 Structured specifications

 An approach to writing requirements where the freedom of the requirements writer
is limited and requirements are written in a standard way.

 This works well for some types of requirements e.g. requirements for embedded

control system but is sometimes too rigid for writing business system requirements.

 Form-based specifications

 Definition of the function or entity.

 Description of inputs and where they come from.

 Description of outputs and where they go to.

 Information about the information needed for the computation and other entities

used.

 Description of the action to be taken.

 Pre and post conditions (if appropriate).

 The side effects (if any) of the function.

 Tabular specification

 Used to supplement natural language.

 Particularly useful when you have to define a number of possible alternative courses of

action.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Use cases

 Use-cases are a scenario based technique in the UML which identify the actors in an

interaction and which describe the interaction itself.

 A set of use cases should describe all possible interactions with the system.

Use cases for the MHC-PMS

 Developing Use cases

 A use case tells a stylized story about how an end user (playing one of a number of
possible roles) interacts with the system under a specific c set of circumstances.

 The story may be narrative text, an outline of tasks or interactions, a template-based

description, or a diagrammatic representation.

 A use case depicts the software or system from the end user’s point of view.

 The first step in writing a use case is to define the set of “actors” that will be involved

in the story.

 Actors are the different people (or devices) that use the system or product within the

context of the function and behavior that is to be described.

 Actors represent the roles that people (or devices) play as the system operates.

 An actor is anything that communicates with the system or product and that is

external to the system itself.

 Primary actors → interact to achieve required system function and derive the

intended benefit from the system. They work directly and frequently with the

software.

 Secondary actors → support the system so that primary actors can do their work.

 Once actors have been identified, use cases can be developed

3. Requirements validation

 Concerned with demonstrating that the requirements define the system that the

customer really wants.

 Requirements error costs are high so validation is very important.

 Fixing a requirements error after delivery may cost up to 100 times the cost of fixing

an implementation error.

 Requirements checking

 Validity. Does the system provide the functions which best support the

customer’s needs?

 Consistency. Are there any requirements conflicts?

 Completeness. Are all functions required by the customer included?

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Developing tests for requirements to check testability.

 Software Requirements Document

 The software requirements document is the official statement of what is required of

the system developers.

 Should include both a definition of user requirements and a specification of the

system requirements.

 It is NOT a design document. As far as possible, it should set of WHAT the system

should do rather than HOW it should do it.

The structure of a requirements document

 Realism. Can the requirements be implemented given available budget and

technology

 Verifiability. Can the requirements be checked?

 Requirements validation techniques

 Requirements reviews

Systematic manual analysis of the requirements:requirements are analysed

systematically by a team of reviewers who check for errors and inconsistencies.

 Prototyping

Using an executable model of the system to check requirements.

 Test-case generation

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Users of a requirements document

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Requirements Management

 Requirements management is the process of managing changing requirements
during the requirements engineering process and system development.

 New requirements emerge as a system is being developed and after it has gone into

use.

 You need to keep track of individual requirements and maintain links between

dependent requirements so that you can assess the impact of requirements changes.

You need to establish a formal process for making change proposals and linking

these to system requirements.

 Changing requirements

 The business and technical environment of the system always changes after

installation.

 The people who pay for a system and the users of that system are rarely the same

people.

 Large systems usually have a diverse user community, with many users having

different requirements and priorities that may be conflicting or contradictory.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Requirements evolution

Requirements management planning

Establishes the level of requirements management detail that is required.

Requirements management decisions:

 Requirements identification: Each requirement must be uniquely identified so that it can

be cross-referenced with other requirements.

 A change management process: This is the set of activities that assess the impact and

cost of changes. I discuss this process in more detail in the following section.

 Traceability policies: These policies define the relationships between each requirement
and between the requirements and the system design that should be recorded.

 Tool support: Tools that may be used range from specialist requirements management

systems to spreadsheets and simple database systems.

Requirements change management

Deciding if a requirements change should be accepted

Problem analysis and change specification

 During this stage, the problem or the change proposal is analyzed to check that it is valid.
This analysis is fed back to the change requestor who may respond with a more specific

requirements change proposal, or decide to withdraw the request.

Change analysis and costing

 The effect of the proposed change is assessed using traceability information and general

knowledge of the system requirements. Once this analysis is completed, a decision is
made whether or not to proceed with the requirements change.

Change implementation

 The requirements document and, where necessary, the system design and

implementation, are modified. Ideally, the document should be organized so that
changes can be easily implemented

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Traceability Matrix

 Is an Engg team that refers to documented links between Software Engg work
products (Eg Requirements and test cases)

 Traceability matrix allows a requirement engineer to represent the relationship

between requirements and other work products.

 Rows of the matrix are labelled using requirement names and columns can be

labelled with the name of Software Engg work product.

 A matrix cell is marked to indicate the presence of link between the two.

 A table type document that is used in the development of software application to
trace requirements.

 It can be used for both forward (from Requirements to Design or Coding) and

backward (from Coding to Requirements) tracing.

 It is also known as Requirement Traceability Matrix (RTM) or Cross Reference

Matrix (CRM).

 It is prepared before the test execution process to ensure that every requirement is

covered in the form of a Test case so that we don't miss out any testing.

 Map all the requirements and corresponding test cases to ensure that we have written

all the test cases for each condition.

 This matrix can support a variety of Engg development activities.

 They can provide continuity for developers as a project moves from one project

phase to another.

 It can be used to ensure the Engg work products have taken all requirements into

account.

 As the no: of req and the number of work products grows.it become increasingly

difficult to keep the traceability up to date.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

The traceability matrix can be classified into three different types which are as follows:

1. Forward traceability

2. Backward or reverse traceability

3. Bi-directional traceability

Goals of Traceability Matrix:

• It helps in tracing the documents that are developed during various phases of SDLC.

• It ensures that the software completely meets the customer's requirements.

• It helps in detecting the root cause of any bug.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Advantages of RTM:

• With the help of the RTM document, we can display the complete test execution and bugs status

based on requirements.

• It is used to show the missing requirements or conflicts in documents.

• We can ensure the complete test coverage, which means all the modules are tested.

• It will also consider the efforts of the testing teamwork towards reworking or reconsidering on

the test cases.

Personas, Scenarios and Stories ,Feature Identification

From personas to features

Fig: personas, scenarios, and user stories lead to features that might be

implemented in a software product.

PERSONAS

 Personas are about “imagined users,” character portraits of types of user that you think might

adopt your product.

 Ex: if your product is aimed at managing appointments fordentists, you might create a dentist

persona, a receptionist persona, and a patient persona.

 Personas of different types of users help to imagine what these users may want to do with

your software and how they might use it.

 They also help you envisage difficulties that users might have in understanding and using

product features.

 There is no standard way to represent personas

Persona should include the following:

 Description about the users’ backgrounds

 Description about why the users might want to use your product

 Description about their education and technical skills.

 Personas should be relatively short and easy to read.

 Personas are a tool that allows team members to “step into the users’ shoes.” Instead of

thinking about what they would do in a particular situation, they can imagine how a persona

would behave and react.

 They can help you check your ideas to ensure that you are not including product features

that aren’t really needed.

 They help you to avoid making unwarranted assumptions, based on your own knowledge,

and designing an overcomplicated or irrelevant product.

 Personas, scenarios and user stories lead to features that might be implemented in a

software product.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

SCENARIOS

 A scenario is a narration that describes a situation in which a user is using your product’s

features to do something that they want to do.

 Scenarios are used in the design of requirements and system features, in system testing, and

in user interface design

 It should briefly explain the user’s problem and present an imagined way thatthe problem

might be solved.

 Scenarios are high-level stories of system use.

 They should describe a sequence of interactions with the system but shouldnot include

details of these interactions.

 They are the basis for both use cases, which are extensively used in object- oriented

methods, and user stories, which are used in agile methods.

 Narrative, high-level scenarios, are primarily a means of facilitating communication and

stimulating design creativity.

 They are effective in communication because they are understandable and accessible to users

and to people responsible for funding and buying the system.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Like personas, they help developers to gain a shared understanding of the system that they

are creating.

 Scenarios are not specifications. They lack detail, they may be incomplete, and they may

not represent all types of user interactions.

Structured scenarios should include different fields such as:

 what the user sees at the beginning of a scenario,

 a description of the normal flow of events,

 a description of what might go wrong, and so on.

At the early stages of product design, the scenarios be narrative rather than structured.

Writing scenarios

 Start with the personas that you have created.

 Try to imagine several scenarios for each persona.

 Not necessary to include every details you think users might do with your product.

 Scenarios should always be written from the user’s perspective and should be based on

identified personas or real users.

 Scenario writing is not a systematic process and different teams approach it in different ways.

 Writing scenarios always gives you ideas for the features that you can include in the system.

User Stories

 These are finer-grain narratives that set out in a more detailed and structured way a single

thing that a user wants from a software system.

 User stories are not intended for planning but for helping with feature identification.

 Aim to develop stories that are helpful in one of 2 ways:

 as a way of extending and adding detail to a scenario;

 as part of the description of the system feature that you have identified.

Feature Identification

 A feature is a way of allowing users to access and use your product’s functionality so that

the feature list defines the overall functionality ofthe system.

 Feature is a fragment of functionality that implements some user or system need. We can

access features through user interface of a product.

 Feature is something that the user needs or wants.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

• Identify the product features that are independent, coherent and relevant:

• Independence →A feature should not depend on how other system features

implemented and should not be affected by the order of activation of other features.

• Coherence Features →should be linked to a single item of functionality. They

should not do more than one thing, and they should never have side effects.

• Relevance System features→shouldreflecttheway users normally carry out

some task. They should not offer obscure functionality that is rarely required.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

• One problem that product developers should be aware of and try to avoid is “feature

creep.”

• Feature creep the number of features in a product creeps potential uses of the product

are envisaged.

• It adds to the complexity of a product, which means that you are likely to introduce bugs

and security vulnerabilities into the software.

• It also usually makes the user interface more complex.

Feature creep happens for 3 reasons:

• Product managers and marketing executives discuss the functionality they need with a

range of different product users. Different users have slightly different needs or may do

the same thing but in slightly different ways.

• Competitive products are introduced with slightly different functionality to your

product. There is marketing pressure to include comparable functionality so that market

share is not lost to these competitors. Thiscan lead to “feature wars,” where competing

products become more and more bloated as they replicate the features of their

competitors.

• The product tries to support both experienced and inexperienced users. Easy ways of

implementing common actions are added for inexperienced users and the more complex

features to accomplish the same thing are retained because experienced users prefer to

work that way.

• Toavoid feature creep, the product manager and the development team should review all

feature proposals and compare new proposals to features that have already been accepted

for implementation.

Feature identification should be a team activity, and as features are

identified, the team should discuss them and generate ideas about related

features.

• Collaborative writing

• Blogs and web pages

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Feature List

The output of the feature identification process should be a list of features that you use for

designing and implementing your product.

• Add detail when you are implementing the feature.

• You can describe a feature from one or more user stories.

• Scenarios and user stories should always be your starting point for

identifying product features.

Design concepts - Design within the context of software engineering, Design

Process, Design concepts, Design Model.

Software design encompasses the set of principles, concepts, and practices that lead to the

development of a high-quality system or product. It is the place where creativity rules—where

stakeholder requirements, business needs, and technical considerations all come together in

the formulation of a product or system. Design creates a representation or model of the software,

the design model provides detail about software architecture, data structures, interfaces, and

components that are necessary to implement the system.

 DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

Software design sits at the technical kernel of software engineering. Beginning once software

requirements have been analyzed and modeled, software design is the last translating the

requirements model into the design model .

Each of the elements of the requirements model provides information that is necessary to create

the four design models required for a complete specification of design. The flow of information

during software design is illustrated. The requirements model, manifested by scenario-based, class-

based, and behavioral elements, feed the design task.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

The data/class design transforms class models into design class realizations and the requisite data

structures required to implement the software. The objects and provide the basis for the data design

activity.

The architectural design defines the relationship between major structural elements of the

software, the architectural styles and patterns. The architectural design representation—the

framework of a computer-based system—is derived from the requirements model.

The interface design describes how the software communicates with systems that interoperate

with it, and with humans who use it. An interface implies a flow of information (e.g., data and/or

control) and a specific type of behavior. Therefore, usage scenarios and behavioral models provide

much of the information required for interface design.

The component-level design transforms structural elements of the software architecture into a

procedural description of software components. Information obtained from the class-based models

and behavioral models serve as the basis for component design.

The importance of software design can be stated with a single word— quality. Design is the only

way that you can accurately translate stakeholder’s requirements into a finished software product

or system. Software design serves as the foundation for all the software engineering and software

support activities that follow.

THE DESIGN PROCESS

Software design is an iterative process through which requirements are translated into a “blueprint”

for constructing the software. Initially, the blueprint depicts a holistic view of software.

Quality Guidelines.

Consider the following guidelines:

1. A design should exhibit an architecture that (1) has been created using recognizable

architectural styles or patterns, (2) is composed of components that exhibit good design

characteristics (these are discussed later in this chapter), and (3) can be implemented in an

evolutionary fashion, thereby facilitating implementation and testing.

2. A design should be modular; that is, the software should be logically partitioned into

elements or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces, and

components.

4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information

obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its meaning.

Assessing Design Quality—the Technical Review

During design, quality is assessed by conducting a series of technical reviews (TRs). A technical

review is a meeting conducted by members of the software team. Usually two, three, or four people

participate depending on the scope of the design information to be reviewed.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Quality Attributes. The FURPS quality attributes represent a target for all software design:

 Functionality is assessed by evaluating the feature set and capabilities of the program, the

generality of the functions that are delivered, and the security of the overall system.

 Usability is assessed by considering human factors,overall aesthetics, consistency, and

documentation.

 Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of

output results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the

predictability of the program.

 Performance is measured using processing speed, response time, resource consumption,

throughput, and efficiency.

 Supportability combines extensibility, adaptability, and serviceability. These three

attributes represent a more common term, maintainability —and in addition, testability,

compatibility, configurability (the ability to organize and control elements of the software

configuration),the ease with which a system can be installed, and the ease with which

problems can be localized.

Common characteristics:

(1) A mechanism for the translation of the requirements model into a design representation,

(2) A notation for representing functional components and their interfaces,

(3) Heuristics for refinement and partitioning

(4) Guidelines for quality assessment.

DESIGN CONCEPTS

Abstraction

 At the highest level of abstraction, a solution is stated in broad terms using the language of

the problem environment.

 At lower levels of abstraction, a more detailed description of the solution is provided.

 A procedural abstraction refers to a sequence of instructions that have a specific and

limited function. The name of a procedural abstraction implies these functions, but specific

details are suppressed.

An example of a procedural abstraction would be the word open for a door. Open

implies a long sequence of procedural steps (e.g., walk to the door, reach out and grasp

knob, turn knob and pull door, step away from moving door, etc.).

 A data abstractionis a named collection of data that describes a data object. In the context

of the procedural abstraction open, we can define a data abstraction called door. Like any

data object, the data abstraction for door would encompass a set of attributes that describe

the door (e.g., door type, swing direction, opening mechanism, weight, dimensions).

Architecture

Software architecture alludes to “the overall structure of the software and the ways in which that

structure provides conceptual integrity for a system”. Architecture is the structure or organization

of program components (modules), the manner in which these components interact, and the

structure of data that are used by the components. A set of architectural patterns enables a software

engineer to reuse design-level concepts.

Shaw and Garlan describe a set of properties that should be specified as part of an architectural

design.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Structural properties define “the components of a system (e.g., modules, objects, filters)

and the manner in which those components are packaged and interact with one another.”.

 Extra-functional properties address “how the design architecture achieves requirements

for performance, capacity, reliability, security, adaptability, and other system

characteristics.

 Families of related systems “draw upon repeatable patterns that are commonly encountered

in the design of families of similar systems.”

Given the specification of these properties, the architectural design can be represented using one

or more of a number of different models.

 Structural models represent architecture as an organized collection of program

components.

 Framework models increase the level of design abstraction by attempting to identify

repeatable architectural design frameworks (patterns) that are encountered in similar types

of applications.

 Dynamic models address the behavioral aspects of the program architecture, indicating

how the structure or system configuration may change as a function of external events.

 Process models focus on the design of the business or technical process that the system

must accommodate.

 Functional models can be used to represent the functional hierarchy of a system.

Patterns

 “A pattern is a named nugget of insight which conveys the essence of a proven solution to

a recurring problem within a certain context amidst competing concerns”.

 A design pattern describes a design structure that solves a particular design problem within

a specific context and amid “forces” that may have an impact on the manner in which the

pattern is applied and used.

 The intent of each design pattern is to provide a description that enables a designer to

determine

(1) Whether the pattern is applicable to the current work,

(2) Whether the pattern can be reused (hence, saving design time), and

(3) Whether the pattern can serve as a guide for developing a similar, but functionally or

structurally different pattern.

Separation of Concerns

Separation of concerns is a design concept that suggests that any complex problem can be more

easily handled if it is subdivided into pieces that can each be solved and/or optimized

independently.

A concern is a feature or behavior that is specified as part of the requirements model for the

software. By separating concerns into smaller, and therefore more manageable pieces, a problem

takes less effort and time to solve.

Modularity

 Modularity is the most common manifestation of separation of concerns. Software is

divided into separately named and addressable components, sometimes called modules that

are integrated to satisfy problem requirements.

 “Modularity is the single attribute of software that allows a program to be intellectually

manageable”.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Monolithic software (i.e., a large program composed of a single module) cannot be easily

grasped by a software engineer. The number of control paths, span of reference, number of

variables, and overall complexity would make understanding close to impossible. In the

Figure, the effort (cost) to develop an individual software module does decrease as the total

number of

modules increases.

 Given the same set of requirements, more modules means smaller individual size.

However, as the number of modules grows, the effort (cost) associated with integrating

the modules also grows. These characteristics lead to a total cost or effort curve shown in

the figure. There is a number, M, of modules that would result in minimum development

cost, but we do not have the necessary sophistication to predict M with assurance.

Information Hiding

 The principle of information hiding suggests that modules be “characterized by design

decisions that (each) hides from all others.”

 Hiding implies that effective modularity can be achieved by defining a set of independent

modules that communicate with one another only that information necessary to achieve

software function.

Functional Independence

 Functional independence is achieved by developing modules with “single minded” function

and an “aversion” to excessive interaction with other modules.

 Functional independence is a key to good design, and design is the key to software quality.

 Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion

is an indication of the relative functional strength of a module. Coupling is an indication of

the relative interdependence among modules.

 A cohesive module performs a single task, requiring little interaction with other

components in other parts of a program

 Coupling is an indication of interconnection among modules in a software structure.

 Coupling depends on the interface complexity between modules, the point at which entry

or reference is made to a module, and what data pass across the interface.

 High cohesion and low coupling make the module to be effectively design.

Refinement

 Stepwise refinement is a top-down design strategy.

 An application is developed by successively refining levels of procedural detail.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 A hierarchy is developed by decomposing a macroscopic statement of function (a

procedural abstraction) in a stepwise fashion until programming language statements are

reached.

 Refinement is actually a process of elaboration. You begin with a statement of function

(or description of information) that is defined at a high level of abstraction.

 Abstraction and refinement are complementary concepts.

 Abstraction enables you to specify procedure and data internally but suppress the need for

“outsiders” to have knowledge of low-level details.

 Refinement helps you to reveal low-level details as design progresses.

 Both concepts allow you to create a complete design model as the design evolves.

Aspects

An aspect is implemented as a separate module (component) rather than as software fragments that

are “scattered” or “tangled” throughout many components.

Refactoring

 Refactoring is a reorganization technique that simplifies the design (or code) of a

component without changing its function or behavior.

 “Refactoring is the process of changing a software system in such a way that it does not

alter the external behavior of the code [design] yet improves its internal structure.”

 When software is refactored, the existing design is examined for redundancy, unused

design elements, inefficient or unnecessary algorithms, poorly constructed or inappropriate

data structures, or any other design failure that can be corrected to yield a better design.

Object-Oriented Design Concepts

The object-oriented (OO) paradigm is widely used in modern software engineering. OO design

concepts such as classes and objects, inheritance, messages, and polymorphism

Design Classes

The analysis model defines a set of analysis classes . Five different types of design classes, each

representing a different layer of the design architecture, can be developed

 User interface classes define all abstractions that are necessary for human-computer

interaction (HCI) and often implement the HCI in the context of a metaphor.

 Business domain classes identify the attributes and services (methods) that are required to

implement some element of the business domain that was defined by one or more analysis

classes.

 Process classes implement lower-level business abstractions required to fully manage the

business domain classes.

 Persistent classes represent data stores (e.g., a database) that will persist beyond the

execution of the software.

 System classes implement software management and control functions that enable the

system to operate and communicate within its computing environment and with the outside

world.

High cohesion. A cohesive design class has a small, focused set of responsibilities and single-

mindedly applies attributes and methods to implement those responsibilities.

Low coupling. Within the design model, it is necessary for design classes to collaborate with one

another. However, collaboration should be kept to an acceptable minimum. If a design model is

highly coupled (all design classes collaborate with all other design classes), the system is difficult

to implement, to test, and to maintain over time. In general, design classes within a subsystem

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

should have only limited knowledge of other classes. This restriction, called the Law of Demeter

suggests that a method should only send messages to methods in neighboring classes.

Design class for Floor Plan and composite aggregation for the class

Dependency Inversion

Dependency inversion principle which states: High-level modules(classes) should not depend

[directly] upon low-level modules. Both should depend on abstractions. Abstractions should not

depend on details. Details should depend on abstractions.

Design for Test

There is an ongoing debate about whether software design or test case design should come first.

Test-driven development (TDD) write tests before implementing any other code. They take to heart

Tom Peters’ credo, “Test fast, fail fast, and adjust fast.” Testing guides their design as they

implement in short, rapid-fi re “write test code—fail the test—write enough code to pass—then

pass the test” cycles.

THE DESIGN MODEL

 The design model can be viewed in two different dimensions.

 The process dimension indicates the evolution of the design model as design tasks are

executed as part of the software process.

 The abstraction dimension represents the level of detail as each element of the analysis

model is transformed into a design equivalent and then refined iteratively. The dashed line

indicates the boundary between the analysis and design models.

 However, that model elements indicated along the horizontal axis are not always developed

in a sequential fashion. In most cases preliminary architectural design sets the stage and is

followed by interface design and component-level design, which often occur in parallel.

The deployment model is usually delayed until the design has been fully developed.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

1 . Data Design Elements

 Data design (sometimes referred to as data architecting) creates a model of data and/or

information that is represented at a high level of abstraction (the customer/user’s view of

data). This data model is then refined into progressively more implementation-specific

representations that can be processed by the computer-based system.

 The structure of data has always been an important part of software design. At the program-

component level, the design of data structures and the associated algorithms required to

manipulate them is essential to the creation of high-quality applications.

 At the application level, the translation of a data model (derived as part of requirements

engineering) into a database is pivotal to achieving the business objectives of a system.

 At the business level, the collection of information stored in disparate databases and

reorganized into a “data warehouse” enables data mining or knowledge discovery that can

have an impact on the success of the business itself.

2. Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The floor plan

depicts the overall layout of the rooms; their size, shape, and relationship to one another; and the

doors and windows that allow movement into and out of the rooms. The floor plan gives us an

overall view of the house. Architectural design elements give us an overall view of the software.

The architectural model is derived from three sources: (1) information about the application

domain for the software to be built; (2) specific requirements model elements such as use cases or

analysis classes, their relationships and collaborations for the problem at hand; and (3) the

availability of architectural styles and patterns.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

3. Interface Design Elements

 The interface design for software is analogous to a set of detailed drawings (and

specifications) for the doors, windows, and external utilities of a house. In essence, the

detailed drawings (and specifications) for the doors, windows, and external utilities tell us

how things and information flow into and out of the house and within the rooms that are

part of the floor plan.

 The interface design elements for software depict information flows into and out of a

system and how it is communicated among the components defined as part of the

architecture.

 There are three important elements of interface design: (1) the user interface (UI), (2)

external interfaces to other systems, devices, networks, or other producers or consumers of

information, and (3) internal interfaces between various design components. These

interface design elements allow the software to communicate externally and enable internal

communication and collaboration among the components that populate the software

architecture.

Interface representation For ControlPanel

4. Component-Level Design Elements

 The component-level design for software is the equivalent to a set of detailed drawings (and

specifications) for each room in a house. These drawings depict wiring and plumbing within

each room, the location of electrical receptacles and wall switches, faucets, sinks, showers,

tubs, drains, cabinets, and closets, and every other detail associated with a room.

 The component-level design for software fully describes the internal detail of each software

component. To accomplish this, the component-level design defines data structures for all

local data objects and algorithmic detail for all processing that occurs within a component

and an interface that allows access to all component operations (behaviors).

A UML component diagram

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

5. Deployment-Level Design Elements

 Deployment-level design elements indicate how software functionality and subsystems will

be allocated within the physical computing environment that will support the software.

 For example, the elements of the SafeHome product are configured to operate within three

primary computing environments—a homebasedPC, the SafeHome control panel, and a

server housed at CPI Corp. (providing Internet-based access to the system). In addition,

limited functionality may be provided with mobile platforms.

 During design, a UML deployment diagram is developed and then refined as shown in

Figure. In the figure, three computing environments are shown (in actuality, there would

be more including sensors, cameras, and functionality delivered by mobile platforms). The

subsystems (functionality) housed within each computing element are indicated. For

example, the personal computer houses subsystems that implement security, surveillance,

home management, and communications features.

 In addition, an external access subsystem has been designed to manage all attempts to

access the SafeHome system from an external source. Each subsystem would be elaborated

to indicate the components that it implements.

 The diagram shown in Figure is in descriptor form. This means that the deployment

diagram shows the computing environment but does not explicitly indicate configuration

details. For example, the “personal computer” is not further identified. It could be a Mac, a

Windows-based PC, a Linux-box or a mobile platform with its associated operating system.

These details are provided when the deployment diagram is revisited in instance form

during the latter stages of design or as construction begins. Each instance of the deployment

(a specific named hardware configuration) is identified.

A UML deployment diagram

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

ARCHITECTURAL DESIGN

Architectural Design - Software Architecture, Architectural Styles, Architectural

considerations, Architectural Design

Architectural design represents the structure of data and program components that are required to

build a computer-based system. It considers the architectural style that the system will take, the

structure and properties of the components that constitute the system, and the interrelationships

that occur among all architectural components of a system.

An architecture model encompassing data architecture and program structure is created during

architectural design.

SOFTWARE ARCHITECTURE

The software architecture of a program or computing system is the structure or structures of the

system, which comprise software components, the externally visible properties of those

components, and the relationships among them.

Identify three key reasons that software architecture is important:

 Software architecture provides a representation that facilitates communication among

all stakeholders.

 The architecture highlights early design decisions that will have a profound impact on all

software engineering work that follows.

 Architecture “constitutes a relatively small, intellectually graspable model of how the

system is structured and how its components work together”

ARCHITECTURAL STYLES

An architectural style is a transformation that is imposed on the design of an entire system. The

intent is to establish a structure for all components of the system. In the case where an existing

architecture is to be reengineered, the imposition of an architectural style will result in fundamental

changes to the structure of the software including a reassignment of the functionality of

components.

Different Architectural Styles

 Data-Centered Architecture: A data store (e.g., a file or database) resides at the

center of this architecture and is accessed frequently by other components that update,

add, delete, or otherwise modify data within the store. Figure illustrates a typical data-

centered style. Client software accesses a central repository. In some cases the data

repository is passive. That is, client software accesses the data independent of any

changes to the data or the actions of other client software. A variation on this approach

transforms the repository into a “blackboard” that sends notifications to client software

when data of interest to the client changes.

Data-centered architectures promote integrability. That is, existing components can be changed

and new client components added to the architecture without concern about other clients (because

the client components operate independently). In addition, data can be passed among clients using

the blackboard mechanism (i.e., the blackboard component serves to coordinate the transfer of

information between clients). Client components independently execute processes.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Data-Flow Architectures: This architecture is applied when input data are to be

transformed through a series of computational or manipulative components into output

data. A pipe-and-filter pattern has a set of components, called filters, connected by

pipes that transmit data from one component to the next. Each filter works

independently of those components upstream and downstream, is designed to expect

data input of a certain form, and produces data output (to the next filter) of a specified

form. However, the filter does not require knowledge of the workings of its

neighboring filters.

If the data flow degenerates into a single line of transforms, it is termed batch sequential. This

structure accepts a batch of data and then applies a series of sequential components (filters) to

transform it.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Main program/subprogram architecture

 Call and Return Architectures: This architectural style enables to achieve a program

structure that is relatively easy to modify and scale. A number of sub styles exist within

this category:

 Main program/subprogram architectures. This classic program structure

decomposes function into a control hierarchy where a “main” program invokes

a number of program components, which in turn may invoke still other

components. Figure above illustrates an architecture of this type.

 Remote procedure call architectures. The components of a main program/

subprogram architecture are distributed across multiple computers on a

network.

 Object-Oriented Architectures: The components of a system encapsulate data and

the operations that must be applied to manipulate the data. Communication and

coordination between components are accomplished via message passing.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 Layered Architectures:

 The basic structure of a layered architecture is illustrated. A number of different

layers are defined, each accomplishing operations that progressively become

closer to the machine instruction set.

 At the outer layer, components service user interface operations.

 At the inner layer, components perform operating system interfacing.

Intermediate layers provide utility services and application software functions.

 Once requirements engineering uncovers the characteristics and constraints of

the system to be built, the architectural style and/or combination of patterns that

best fits those characteristics and constraints can be chosen. In many cases,

more than one pattern might be appropriate and alternative architectural styles

can be designed and evaluated. For example, a layered style (appropriate for

most systems) can be combined with a data-centered architecture in many

database applications.

ARCHITECTURAL CONSIDERATIONS

Buschmann and Henny suggest several architectural considerations that can provide software

engineers with guidance as architecture decisions are made:

 Economy —many software architectures suffer from unnecessary complexity driven by

the inclusion of unnecessary features or nonfunctional requirements (e.g., reusability when

it serves no purpose). The best software is uncluttered and relies on abstraction to reduce

unnecessary detail.

 Visibility —As the design model is created, architectural decisions and the reasons for

them should be obvious to software engineers who examine the model at a later time. Poor

visibility arises when important design and domain concepts are poorly communicated to

those who must complete the design and implement the system.

 Spacing— Separation of concerns in a design without introducing hidden dependencies is

a desirable design concept that is sometimes referred to as spacing. Sufficient spacing leads

to modular designs, but too much spacing leads to fragmentation and loss of visibility.

 Symmetry —Architectural symmetry implies that a system is consistent and balanced in

its attributes. Symmetric designs are easier to understand, comprehend, and communicate.

As an example of architectural symmetry, consider a customer account object whose life

cycle is modeled directly by a software architecture that requires both open () and close()

methods. Architectural symmetry can be both structural and behavioral.

 Emergence —Emergent, self-organized behavior and control are often the key to creating

scalable, efficient, and economic software architectures. For example, many real-time

software applications are event driven. The sequence and duration of the events that define

the system’s behavior is an emergent quality. It is very difficult to plan for every possible

sequence of events. Instead the system architect should create a flexible system that

accommodates this emergent behavior.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 ARCHITECTURAL DESIGN

As architectural design begins, context must be established. To accomplish this, the external

entities (e.g., other systems, devices, and people) that interact with the software and the nature of

their interaction are described. This information can generally be acquired from the requirements

model. Once context is modeled and all external software interfaces have been described to identify

a set of architectural archetypes.

An archetype is an abstraction (similar to a class) that represents one element of system behavior.

The set of archetypes provides a collection of abstractions that must be modeled architecturally if

the system is to be constructed, but the archetypes themselves do not provide enough

implementation detail. Therefore, the designer specifies the structure of the system by defining and

refining software components that implement each archetype. This process continues iteratively

until a complete architectural structure has been derived.

Representing the System in Context

At the architectural design level, a software architect uses an architectural context diagram (ACD)

to model the manner in which software interacts with entities external to its boundaries. The generic

structure of the architectural context diagram is illustrated.

Referring to the figure, systems that interoperate with the target system (the system for which an

architectural design is to be developed) are represented as:

 Superordinate systems —those systems that use the target system as part of some higher-

level processing scheme.

 Subordinate systems —those systems that are used by the target system and provide data

or processing that are necessary to complete target system functionality.

 Peer-level systems —those systems that interact on a peer-to-peer basis (i.e., information

is either produced or consumed by the peers and the target system.

 Actors —entities (people, devices) that interact with the target system by producing or

consuming information that is necessary for requisite processing.

Each of these external entities communicates with the target system through an interface (the small

shaded rectangles).

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to the design of

an architecture for the target system. In general, a relatively small set of archetypes is required to

design even relatively complex systems. The target system architecture is composed of these

archetypes, which represent stable elements of the architecture but may be instantiated many

different ways based on the behavior of the system.

In many cases, archetypes can be derived by examining the analysis classes defined as part of the

requirements model. Continuing the discussion of the Safe Home security function, you might

define the following archetypes:

 Node. Represents a cohesive collection of input and output elements of the home security

function. For example, a node might be composed of (1) various sensors and (2) a variety

of alarm (output) indicators.

 Detector. An abstraction that encompasses all sensing equipment that feeds information

into the target system.

 Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights,

bell) for indicating that an alarm condition is occurring.

 Controller. An abstraction that depicts the mechanism that allows the arming or disarming

of a node. If controllers reside on a network, they have the ability to communicate with one

another.

Each of these archetypes is depicted using UML notation as shown in Figure .Detector might be

refined into a class hierarchy of sensors.

Refining the Architecture into Components

 As the software architecture is refined into components, the structure of the system begins

to emerge. These analysis classes represent entities within the application (business)

domain that must be addressed within the software architecture. Hence, the application

domain is one source for the derivation and refinement of components. Another source is

the infrastructure domain.

 The architecture must accommodate many infrastructure components that enable

application components but have no business connection to the application domain.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 For example, memory management components, communication components, database

components, and task management components are often integrated into the software

architecture.

 The interfaces depicted in the architecture context diagram imply one or more specialized

components that process the data that flows across the interface. In some cases (e.g., a

graphical user interface), a complete subsystem architecture with many components must

be designed.

 Continuing the Safe Home Security function example, you might define the set of top-level

components that address the following functionality:

 External communication management —coordinates communication of the security

function with external entities such as other Internet-based systems and external alarm

notification.

 Control panel processing —manages all control panel functionality.

 Detector management —coordinates access to all detectors attached to the system.

 Alarm processing —verifies and acts on all alarm conditions.

The overall architectural structure (represented as a UML component diagram) is illustrated in

Figure. Transactions are acquired by external communication management as they move in from

components that process the SafeHome GUI and the Internet interface. This information is

managed by a SafeHome executive component that selects the appropriate product function (in this

case security). The control panel processing component interacts with the homeowner to

arm/disarm the security function. The detector management component polls sensors to detect an

alarm condition, and the alarm processing component produces output when an alarm is detected.

Describing Instantiations of the System

 The architectural design that has been modeled to this point is still relatively high level.

The context of the system has been represented; archetypes that indicate the important

abstractions within the problem domain have been defined, the overall structure of the

system is apparent, and the major software components have been identified. However,

further refinement is still necessary.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Architectural Design for Web Apps

 To accomplish this, an actual instantiation of the architecture is developed. By this we mean

that the architecture is applied to a specific problem with the intent of demonstrating that

the structure and components are appropriate.

Figure illustrates an instantiation of the SafeHome architecture for the security system.

Components shown in Figure above are elaborated to show additional detail. For example, the

detector management component interacts with a scheduler infrastructure component that

implements polling of each sensor object used by the security system. Similar elaboration is

performed for each of the components represented in Figure

 WebApps are client-server applications typically structured using multilayered

architectures, including a user interface or view layer, a controller layer which directs the

flow of information to and from the client browser based on a set of business rules, and a

content or model layer that may also contain the business rules for the WebApp.

 The user interface for a WebApp is designed around the characteristics of the web browser

running on the client machine (usually a personal computer or mobile device). Data layers

reside on a server. Business rules can be implemented using a server-based scripting

language such as PHP or a client-based scripting language such as JavaScript. An architect

will examine requirements for security and usability to determine which features should be

allocated to the client or server.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

 The architectural design of a WebApp is also influenced by the structure (linear or

nonlinear) of the content that needs to be accessed by the client. The architectural

components (Web pages) of a WebApp are designed to allow control to be passed to other

system components, allowing very flexible navigation structures. The physical location of

media and other content resources also influences the architectural choices made by

software engineers.

Architectural Design for Mobile Apps

 Mobile apps are typically structured using multilayered architectures, including a user

interface layer, a business layer, and a data layer. With mobile apps you have the choice of

building a thin Web-based client or a rich client. With a thin client, only the user interface

resides on the mobile device, whereas the business and data layers reside on a server. With

a rich client all three layers may reside on the mobile device itself.

 Mobile devices differ from one another in terms of their physical characteristics (e.g.,

screen sizes, input devices), software (e.g., operating systems, language support), and

hardware (e.g., memory, network connections). Each of these attributes shapes the direction

of the architectural alternatives that can be selected.

 A number of considerations that can influence the architectural design of a mobile app: (1)

the type of web client (thin or rich) to be built, (2) the categories of devices (e.g., smart

phones, tablets) that are supported, (3) the degree of connectivity (occasional or persistent)

required, (4) the bandwidth required, (5) the constraints imposed by the mobile platform,

(6) the degree to which reuse and maintainability are important, and (7) device resource

constraints (e.g., battery life, memory size, processor speed).

COMPONENT LEVEL DESIGN

Component

A component is a modular building block for computer software. The OMG

Unified Modeling Language Specification defines a component as “a modular,

deployable, and replaceable part of a system that encapsulates implementation and

exposes a set of interfaces.”

Components populate the software architecture and, as a consequence, play a role in

achieving the objectives and requirements of the system to be built. Because

components reside within the software architecture, they must communicate and

collaborate with other components and with entities (e.g., other systems, devices, and

people) that exist outside the boundaries of the software.

The design for each component, represented in graphical, tabular, or text-based notation, is the

primary work product produced during component-level design.

Three important views of what a component is and how it is used as design

modeling proceeds.

An Object-Oriented View

In the context of object-oriented software engineering, a component contains a set

of collaborating classes. Each class within a component has been fully elaborated to

include all attributes and operations that are relevant to its implementation. As part

of the design elaboration, all interfaces that enable the classes to communicate and

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

collaborate with other design classes must also be defined. To accomplish this, we

begin with the analysis model and elaborate analysis classes(for components that

relate to the problem domain) and infrastructure classes (for components (for

components that provide support services for the problem domain).

The Traditional View

A traditional component called a module, resides within the software architecture

and serves one of three important roles: (1) a control component that coordinates

the invocation of all other problem domain components, (2) a problem domain

component that implements a complete or partial function that is required by the

customer, or (3) an infrastructure component that is responsible for functions that

support the processing required in the problem domain.

A Process-Related View

Over the past three decades, the software engineering community has emphasized

the need to build systems that make use of existing software components or design

patterns. A catalog of proven design or code-level components is made available

to you as design work proceeds. As the software architecture is developed, we

choose components or design patterns from the catalog and use them to populate

the architecture. Because these components have been created with reusability in

mind, a complete description of their interface, the function(s) they perform, and

the communication and collaboration they require are all available to you.

DESIGN CLASS BASED COMPONENTS

Basic design principles

The Open-Closed Principle (OCP). “A module [component] should be open for

extension but closed for modification”

 Should specify the component in a way that allows it to be extended (within

the functional domain that it addresses) without the need to make internal (code

or logic-level) modifications to the component itself.

 To accomplish this, you create abstractions that serve as a buffer between

the functionality that is likely to be extended and the design class itself.

 One way to accomplish OCP for the Detector class is illustrated in Figure

.The sensor interface presents a consistent view of sensors to the detector

component. If a new type of sensor is added no change is required for the

Detector class(component). The OCP is preserved.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

The Liskov Substitution Principle (LSP).

 “Subclasses should be substitutable for their base classes”.

 This design principle suggests that a component that uses a base class should

continue to function properly if a class derived from the base class is passed

to the component instead

 In the context, a “contract” is a pre-condition that must be true before the

component uses a base class and a post-condition that should be true after

the component uses a base class. When you create derived classes, be sure

they conform to the pre- and post-conditions.

Dependency Inversion Principle (DIP).

 “Depend on abstractions. Do not dependon concretions”.

 Abstractions are the place where a design can be extended without great

complication. The more a component depends on other concrete

components (rather than on abstractions such as an interface), the more

difficult it will be to extend.

The Interface Segregation Principle (ISP).

 “Many client-specific interfaces are better than one general purpose

interface”.

 There are many instances in which multiple client components use the

operations provided by a server class.

 Should create a specialized interface to serve each major category of

clients. Only those operations that are relevant to a particular category of

clients should be specified in the interface for that client. If multiple clients

require the same operations, it should be specified in each of specialized

interfaces.

The Release Reuse Equivalency Principle (REP).

 “The granule of reuse is the granule of release”

 When classes or components are designed for reuse, an implicit contract is

established between the developer of the reusable entity and the people who

will use it.

 The developer commits to establish a release control system that supports

and maintains older versions of the entity while theusers slowly upgrade to

the most current version.

The Common Closure Principle (CCP).

 “Classes that change together belong together.”

 Classes should be packaged cohesively.

 That is, when classes are packaged as part of a design, they should address

the same functional or behavioural area.

 When some characteristic of that area must change, it is likely that only

those classes within the package will require modification. This leads tomore

effective change control and release management

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

The Common Reuse Principle (CRP).

 “Classes that aren’t reused together should not be grouped together”

 When one or more classes with a package changes, the release number of

the package changes.

 All other classes or packages that rely on the package that has been changed

must now update to the most recent release of the package and be tested to

ensure that the new release operated without incident.

 If classes are not grouped cohesively, it is possible that a class with no

relationship to other classes within a package is changed. This will precipitate

unnecessary integration and testing.

 For this reason, only classes that are reused together should be included

within a package.

Component-Level Design Guidelines

These guidelinesapply to components, their interfaces, and the dependencies and

inheritance characteristics that have an impact on the resultant design.

Suggests the following guidelines:

Components. Naming conventions should be established for components that

are specified as part of the architectural model and then refined and elaborated as

part of the component-level model. Architectural component names should be

drawn from the problem domain and should have meaning to all stakeholders

who view the architectural model. For example, the class

We can choose to use stereotypes to help identify the nature of components at the

detailed design level. For example, <<infrastructure>> might be used to identify an

infrastructure component, <<database>> could be used to identify a database that

services one or more design classes or the entire system; <<table>> can be used to

identify a table within a database.

Interfaces. Interfaces provide important information about communication and

collaboration (as well as helping us to achieve the OPC).

Dependencies and Inheritance. For improved readability, it is a good idea to model

dependencies from left to right and inheritance from bottom (derived classes) to

top (base classes).

Cohesion

Implies that a component or class encapsulates only attributes and operations that

are closely related to one another and to the class or component itself.

Functional. Exhibited primarily by operations, this level of cohesion occurs when a

module performs one and only one computation and then returns aresult.

Layer. Exhibited by packages, components, and classes, this type of cohesion

occurs when a higher layer accesses the services of a lower layer, but lower layers

do not access higher layers.

Communicational. All operations that access the same data are defined within

one class. In general, such classes focus solely on the data in question, accessing

and storing it.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Classes and components that exhibit functional, layer, and communicational

cohesion are relatively easy to implement, test, and maintain.

Coupling

 As the amount of communication and collaboration increases (i.e., as

the degree of “connectedness” between classes increases), the

complexity of the system also increases. And as complexity

increases, the difficulty of implementing, testing, and maintaining

software grows.

 Coupling is a qualitative measure of the degree to which classes are

connected to one another. As classes (and components) become more

interdependent, coupling increases. An important objective in

component-level design is tokeep coupling as low as is possible.

 Content coupling occurs when one component “surreptitiously

modifies data that is internal to another component” .This violates

information hiding—a basic designconcept.

 Control coupling occurs when operation A() invokes operation B()

and passes a control flag to B. The control flag then “directs” logical

flow within B. The problem with this form of coupling is that an

unrelated change in B can result in the necessity to change the

meaning of the control flag that A passes. If this is overlooked, an

error will result.

 External coupling occurs when a component communicates or

collaborates with infrastructure components (e.g., operating system

functions, database capability, tele-communication functions).

Although this type of coupling is necessary, it should be limited to a

small number of components or classes within a system.

 Software must communicate internally and externally. Therefore,

coupling is a fact of life. However, the designer should work to reduce

coupling whenever possible

CONDUCTING COMPONENT LEVEL DESIGN

The following steps represent a typical task set for component-level design, when

it is applied for an object-oriented system.

Step 1. Identify all design classes that correspond to the problem domain. Using

the requirements and architectural model, each analysis class and architectural

component is elaborated

Step 2. Identify all design classes that correspond to the infrastructure domain.

These classes are not described in the requirements model and are often missing

from the architecture model, but they must be described at this point. Classes and

components in this category include GUI components (often available as reusable

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

components), operating system components, and object and data management

components.

Step 3. Elaborate all design classes that are not acquired as reusable components.

Elaboration requires that all interfaces, attributes, and operations necessary to

implement the class be described in detail. Design heuristics (e.g., component

cohesion and coupling) must be considered as this task is conducted.

Step 3a. Specify message details when classes or components collaborate. The

requirements model makes use of a collaboration diagram to show how analysis classes

collaborate with one another. Messages that are passed between objects within a

system.

Step 3b. Identify appropriate interfaces for each component.Within the context of

component-level design, a UML interface is “a group of externally visible (i.e.,

public) operations. The interface contains no internal structure, it has no attributes, no

associations. “.

Step 3c. Elaborate attributes and define data types and data structures required to

implement them. In general, data structures and types used to define attributes are

defined within the context of the programming language that is to be used for

implementation.

Step 3d. Describe processing flow within each operation in detail. This may be

accomplished using a programming language-based pseudo code or with a UML

activity diagram. Each software component is elaborated through a number of

iterations that apply the stepwise refinement concept.

The first iteration defines each operation as part of the design class. In every case,

the operation should be characterized in a way that ensures high cohesion; that is,

the operation should perform a single targeted function or sub function. The next

iteration does little more than expand the operation name.

Step 4. Describe persistent data sources (databases and files) and identify the

classes required to manage them. Databases and files normally transcend the

design description of an individual component. In most cases, these persistent data

stores are initially specified as part of architectural design. However, as design

elaboration proceeds, it is often useful to provide additional detail about the

structure and organization of these persistent data sources.

Step 5. Develop and elaborate behavioural representations for a class or

component. UML state diagrams were used as part of the requirements model to

represent the externally observable behaviour of the system and the more localized

behaviour of individual analysis classes. During component-level design, it is

sometimes necessary to model the behaviour of a design class.

The dynamic behavior of an object (an instantiation of a design class as the

program executes) is affected by events that are external to it and the current state

(mode of behavior) of the object. To understand the dynamic behavior of an object,

you should examine all use cases that are relevant to the design class throughout

its life.

Step 6. Elaborate deployment diagrams to provide additional implementation

detail. Deployment diagrams are used as part of architectural design and are

represented in descriptor form. In this form, major system functions (often

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

represented as subsystems) are represented within the context of the computing

environment that will house them.

During component-level design, deployment diagrams can be elaborated to

represent the location of key packages of components. However, components

generally are not represented individually within a component diagram. In some

cases, deployment diagrams are elaborated into instance form at this time. This

means that the specific hard- ware and operating system environment(s) that will be

used is (are) specified and the location of component packages within this

environment is indicated.

Step 7. Refactor every component-level design representation and always con- sider

alternatives. Design is an iterative process. The first component-level model we

create will not be as complete, consistent, or accurate as the nth iteration you apply

to the model. It is essential to refactor as design work is conducted.

COMPONENT LEVEL DESIGN FOR WEB APPLICATIONS

WebApp component is (1) a well-defined cohesive function that manipulates

content or provides computational or data processing for an end user or (2) a

cohesive package of content and functionality that provides the end user with some

required capability. Therefore, component-level design for WebApps often

incorporates elements of content design and functional design.

Content Design at the Component Level

Content design at the component level focuses on content objects and the manner

in which they may be packaged for presentation to a WebApp end user. The

formality of content design at the component level should be tuned to the

characteristics of the WebApp to be built. In many cases, content objects need not

be organized as components and can be manipulated individually. However, as the

size and complexity (of the WebApp, content objects, and their interrelation-ships)

grows, it may be necessary to organize content in a way that allows easier reference

and design manipulation. In addition, if content is highly dynamic (e.g., the content

for an online auction site), it becomes important to establish a clear structural

model that incorporates content components.

Functional Design at the Component Level

WebApp functionality is delivered as a series of components developed in parallel

with the information architecture to ensure consistency. We beginby considering

both the requirements model and the initial information architecture and then

examining how functionality affects the user’s interaction with the application, the

information that is presented, and the user tasks that are conducted.

During architectural design, WebApp content and functionality are combined to

create a functional architecture. A functional architecture is a representation of

the functional domain of the WebApp and describes the key functional components

in the WebApp and how these components interact with each other

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

Design Document Template

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)

CASE STUDY

Ariane 5 launch accident

This case study describes the accident that occurred on the initial launch of the Ariane 5 rocket, a launcher

developed by the European Space Agency. The rocket exploded shortly after take-off and the subsequent

enquiry showed that this was due to a fault in the software in the inertial navigation system.

In June 1996, the then new Arianne 5 rocket was launched on its maiden flight. It carried a payload of

scientific satellites. Ariane 5 was commercially very significant for the European Space Agency as it could

carry a much heavier payload than the Ariane 4 series of launchers. Thirty seven seconds into the flight,

software in the inertial navigation system, whose software was reused from Ariane 4, shut down causing

incorrect signals to be sent to the engines. These swivelled in such a way that uncontrollable stresses were

placed on the rocket and it started to break up. Ground controllers initiated self-destruct and the rocket

and payload was destroyed.

A subsequent enquiry showed that the cause of the failure was that the software in the inertial reference

system shut itself down because of an unhandled numeric exception (integer overflow). There was a

backup software system but this was not diverse so it failed in the same way.

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 47

	MODULE 2
	Requirement Analysis and Design (8 hours)
	Design concepts - Design within the context of software engineering, Design Process, Design concepts, Design Model.
	Component level design - What is a component?, Designing Class-Based Components, Conducting Component level design, Component level design for web-apps.
	Requirements Engineering
	Types of requirement
	 System requirements-
	Readers of different types of requirements specification
	 Functional requirements-
	 Non-functional requirements-
	 Domain requirements
	Functional requirements
	Non-functional requirements
	Types of nonfunctional requirement
	Non-functional classifications
	 Organisational requirements
	 External requirements
	A spiral view of the requirements engineering process
	Problems of requirements analysis
	Requirements elicitation and analysis
	The requirements elicitation and analysis process
	 Interviewing
	 Closed interviews : stakeholders answers based on pre-determined list of questions
	Effective interviewing
	 Prompt the interviewee to get discussions going using a springboard question, a requirements proposal, or by working together on a prototype system.
	 Ethnography
	Focused ethnography
	Ethnography and prototyping for requirements analysis
	o It is therefore important that these are as complete as possible. Ways of writing a system requirements specification
	 Natural language specification
	 Guidelines for writing requirements
	 Problems with natural language
	 Structured specifications
	 Tabular specification
	 Use cases
	Use cases for the MHC-PMS
	3. Requirements validation
	 Requirements checking
	 Consistency. Are there any requirements conflicts?
	 Realism. Can the requirements be implemented given available budget and technology
	 Requirements validation techniques
	 Prototyping
	 Test-case generation
	Requirements Management
	 Changing requirements
	 Requirements evolution
	Requirements change management
	Change analysis and costing
	Change implementation
	Traceability Matrix
	The traceability matrix can be classified into three different types which are as follows:
	2. Backward or reverse traceability
	Goals of Traceability Matrix:
	 Advantages of RTM:
	Personas, Scenarios and Stories ,Feature Identification
	PERSONAS
	SCENARIOS
	Writing scenarios
	User Stories
	Feature Identification
	• Identify the product features that are independent, coherent and relevant:
	Feature List

	Design concepts - Design within the context of software engineering, Design Process, Design concepts, Design Model.
	DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING
	THE DESIGN PROCESS
	Quality Guidelines.
	Assessing Design Quality—the Technical Review
	DESIGN CONCEPTS
	Architecture
	Patterns
	Separation of Concerns
	Modularity
	Information Hiding
	Functional Independence
	Refinement
	 Abstraction and refinement are complementary concepts.
	Aspects
	Refactoring
	Object-Oriented Design Concepts
	Design Classes
	Design class for Floor Plan and composite aggregation for the class Dependency Inversion
	Design for Test
	THE DESIGN MODEL
	1 . Data Design Elements
	2. Architectural Design Elements
	3. Interface Design Elements
	4. Component-Level Design Elements
	5. Deployment-Level Design Elements
	ARCHITECTURAL DESIGN
	SOFTWARE ARCHITECTURE
	ARCHITECTURAL STYLES
	Different Architectural Styles
	 Main program/subprogram architecture
	 Layered Architectures:
	ARCHITECTURAL CONSIDERATIONS
	ARCHITECTURAL DESIGN (1)
	Representing the System in Context
	Defining Archetypes
	Refining the Architecture into Components
	Describing Instantiations of the System
	Architectural Design for Mobile Apps

	COMPONENT LEVEL DESIGN
	An Object-Oriented View
	The Traditional View
	A Process-Related View
	DESIGN CLASS BASED COMPONENTS
	The Liskov Substitution Principle (LSP).
	Dependency Inversion Principle (DIP).
	The Interface Segregation Principle (ISP).
	The Release Reuse Equivalency Principle (REP).
	The Common Closure Principle (CCP).
	The Common Reuse Principle (CRP).

	Component-Level Design Guidelines
	Cohesion
	Coupling

	CONDUCTING COMPONENT LEVEL DESIGN
	COMPONENT LEVEL DESIGN FOR WEB APPLICATIONS
	Content Design at the Component Level
	Functional Design at the Component Level

	Design Document Template
	MANAGEMENT OF SOFTWARE SYSTEMS CST 309 KTU (S5 CSE)
	CASE STUDY

